<u>SYMULACJA POMIARÓW MIKROKALORYMETRYCZNYCH PRZEMIAN</u> <u>FAZOWYCH LIPIDÓW</u>

<u>Aparatura</u>

Oprogramowanie komputerowe służące do symulacji pomiarów mikrokalorymetrycznych.

Przebieg ćwiczenia

W ramach ćwiczenia przeprowadzone zostaną następujące badania:

- A. Badanie przemiany fazowej 1,2-dimirystoilo-sn-glicerolo-3-fosfatydylocholiny (DMPC)
- B. Badanie przemiany fazowej 1,2-dimyrilo-sn-glicerolo-3-fosfogliceroliny (DMPG)
- C. Badanie przemiany fazowej 1,2-dipalmitoilo-sn-glicerolo-3fosfatydylocholiny (DPPC)
- D. Badanie przemiany fazowej nieznanego lipidu.
- 1. Włączyć komputer i wybrać ikonę "Biofiz".
- 2. Otworzyć znajdujący się na pulpicie plik "kalorymetr" poprzez dwukrotne kliknięcie lewym klawiszem myszy.

A. Badanie przemiany fazowej lipidu DMPC.

- 1. W oknie programu nacisnąć białą strzałkę widoczną w lewym górnym rogu ekranu.
- 2. Nacisnąć klawisz "konfiguracja pomiarów". Wyświetli się wówczas okno konfiguracji.
- 3. Wybrać następujące ustawienia pomiarowe:
 - a. okienko "Nazwa lipidu" wybrać DMPC,
 - b. okienko "Temperatura początkowa" wybrać wartość 285 K,
 - c. okienko "Temperatura końcowa" wybrać wartość 315 K.
 - d. okienko "Temperatura chłodzenia" wybrać wartość 280 K.
 - e. okienko "Prędkość skanowania" wybrać wartość 3 K/min.
- 4. Po wyborze ustawień wcisnąć klawisz "Gotowe"

UWAGA! Postępować zgodnie z poleceniami zamieszczonymi w oknie "info"!

- 5. Po zatwierdzeniu ustawień:
 - a. Rozpoczyna się automatyczne chłodzenie do temperatury podanej w punkcie 3d. Po osiągnięciu tej temperatury nacisnąć klawisz "Start".
 - b. Rozpoczyna się grzanie próbek. Temperatura chłodzenia jest niższa od temperatury początkowej, aby wygasły wszelkie stany nieustalone i zakłócenia zanim rozpocznie się właściwy pomiar.
 - c. Na ekranie monitora zaczyna się pojawiać linia odwzorowująca zależność H(T). Gdy temperatura osiągnie wartość wpisaną w okienku **"Temperatura końcowa"** rozpocznie się automatyczne schładzanie układu.
 - d. Nacisnąć przycisk "Analiza". Na wykresie pojawią się dwa kursory: czerwony i zielony.
- 6. Za pomocą myszki komputerowej ustawić:
 - a. czerwony kursor w miejscu, w którym rozpoczyna się ostatni prostoliniowy odcinek linii bazowej termogramu bezpośrednio przed głównym przejściem fazowym i nacisnąć klawisz "LB przed pikiem – początek".
 - b. czerwony kursor w miejscu, w którym rozpoczyna się główna przemiana fazowa i nacisnąć klawisz "LB przed pikiem koniec".
 - c. zielony kursor w miejscu, w którym kończy się główna przemiana fazowa i nacisnąć klawisz "LB za pikiem początek".
 - d. zielony kursor w miejscu, w którym kończy się pierwszy prostoliniowy odcinek linii bazowej termogramu bezpośrednio za głównym przejściem fazowym i nacisnąć klawisz "**LB za pikiem koniec**".
 - e. naciśnij klawisz "Wyniki"
 - f. pojawi się nowe okno z parametrami przejścia fazowego. Wpisać te dane do formularza. Następnie nacisnąć klawisz "**Wyjście**".

B. Badanie przemiany fazowej lipidu DMPG.

- 1. Nacisnąć klawisz "konfiguracja pomiarów".
- 2. Wybrać następujące ustawienia pomiarowe:
 - a. W okienku "Nazwa lipidu" wybrać DMPG,
 - b. W okienku "Temperatura początkowa" wybrać wartość 285 K,
 - c. W okienku "Temperatura końcowa" wybrać wartość 315 K.
 - d. W okienku "Temperatura chłodzenia" wybrać wartość 282 K.
 - e. W okienku "Prędkość skanowania" wybrać wartość 3 K/min.
 - f. Nacisnąć klawisz "Gotowe"
- 3. Wykonać czynności z części A od punktu 5 do 6.

C. Badanie przemiany fazowej lipidu DPPC.

- 1. Nacisnąć klawisz "konfiguracja pomiarów".
- 2. Wybrać następujące ustawienia pomiarowe:
 - a. W okienku "Nazwa lipidu" wybrać DPPC,
 - b. W okienku "Temperatura początkowa" wybrać wartość 300 K,
 - c. W okienku "Temperatura końcowa" wybrać wartość 330 K.
 - d. W okienku "Temperatura chłodzenia" wybrać wartość 290 K.
 - e. W okienku "Prędkość skanowania" wybrać wartość 3 K/min.
 - f. Nacisnąć klawisz "Gotowe"
- 3. Wykonać czynności z części A od punktu 5 do 6.

D. Identyfikacja nieznanego lipidu.

- 1. Nacisnąć klawisz "konfiguracja pomiarów".
- 2. Wybrać następujące ustawienia pomiarowe:
 - a. W okienku "Nazwa lipidu" wybrać "Nieznany lipid",
 - b. W okienku "Temperatura początkowa" wybrać wartość 285 K,
 - c. W okienku "Temperatura końcowa" wybrać wartość 330 K.
 - d. W okienku "Temperatura chłodzenia" wybrać wartość 281 K.
 - e. W okienku "Prędkość skanowania" wybrać wartość 4 K/min.
 - f. Nacisnąć klawisz "Gotowe".
 - 3. Wykonać czynności z części A od punktu 5 do 6.
 - 4. Na podstawie dotychczas uzyskanych danych zidentyfikować badany lipid.
 - 5. Wpisać jego nazwę do formularza.
 - 6. Przerysować termogram na papierze milimetrowym.

Wymagane wiadomości teoretyczne

- 1. Budowa błon biologicznych.
- 2. Przemiany fazowe lipidów i ich znaczenie w układach biologicznych.
- 3. Parametry strukturalne wpływające na temperaturę przejścia fazowego lipidów.
- 4. Kalorymetria. Zasada działania mikrokalorymetru różnicowego. Parametry termogramu (temperatura przemiany, zmiana entalpii przejścia, szerokość połówkowa)

<u>Literatura</u>

- 1. M. Bryszewska, W. Leyko, "Biofizyka dla biologów", PWN, Warszawa 1997.
- 2. S. Miękisz, A. Hendrich, "Wybrane zagadnienia z biofizyki", Volumed, Wrocław 1998.

Uniwersytet Medyczny we Wrocławiu Katedra i Zakład Biofizyki i Neurobiologii	Ćwiczenie 14 Symulacja pomiarów mikrokalorymetrycznych przemian fazowych lipidów	
		Wydział:
Imiona i nazwiska studentów		Data:
Ocena:	Podpis prowadzącego ćwiczenia	

- 1. Zgodnie z instrukcją wykonać pomiary przemian fazowych.
- 2. Uzyskane w czasie pomiarów wartości temperatury, entalpii oraz szerokości połówkowej przemiany wpisać do tabeli pomiarowej.

Nr próbki	Temperatura przemiany [°C]	Pole powierzchni pod krzywą	Szerokość połówkowa piku
DMPC			
DMPG			
DPPC			
NIEZNANY LIPID			

Nazwa nieznanego lipidu	

3. Z ekranu przerysować na papier milimetrowy wykres zależności $\Delta H(T)$.