WAVE ABSORPTION IN SOLUTIONS OF ORGANIC DYES. ANALYSIS OF SOLUTION COMPOSITION

<u>Equipment</u>

- 1. Spectrophotometer
- 2. Solution of fluorescein (FL) $2 \times 10^{-4} \text{ mol/dm}^3 (200 \,\mu\text{M})$
- 3. Solution of Bengali rose (BR) 2 x 10^{-4} mol/dm³ (200 μ M)

Course of the practical

I. PREPARATION OF DYE SOLUTIONS.

- 1. You are given water solutions of two dyes: fluorescein (FL) and Bengali rose (BR). The concentration of both stock solutions is $2 \times 10^{-4} \text{ mol/dm}^3$ (200 μ M).
- 2. Dilute stock solution of each dye with distilled water so that you obtain the series of solutions (concentrations 2, 3, 4, 5, 6, 7 and 8 μ mol/dm³). Total volume of each solution is 10 cm³. Mix all the solutions carefully. (Put a rubber stopper into the test tube and invert the tube several times. Before transferring the stopper to the next solution dry the stopper with a paper tissue).

II. FINDING MOLAR ABSORPTION COEFFICIENTS OF STUDIED DYES

A. Measurements

Turn on the spectrophotometer with the switch on its back. Wait at least 15 minutes. Use this time to prepare dye solutions.

ATTENTION 1: keep the spectrophotometer's chamber closed while turning the device on.

ATTENTION 2: the cuvettes can be touched only at side (opaque) walls.

ATTENTION 3: do not throw away FL and BR solutions (8 µmol/dm³) after the measurements. They are necessary for preparing the dye mixture.

- 1. Place a cuvette filled with distilled water inside the spectrophotometer. Check the position of the cuvette a small triangle on it should overlap a white line inside the measurement chamber. Close the lid.
- 2. Set the measurement mode to Absorption using "A/T/C" button. You should see a letter A in the lower right corner of the display.
- 3. Using the figures of absorption spectra find the analytical wavelengths (with accuracy of 1 nm) for the monomer of fluorescein (FL) and Bengali rose (BR) and write them down to the Table 1.
- 4. Set the wavelength chosen in the point II.3 for FL using the buttons "100", "010" and "001" for setting hundreds, tens and units, respectively.
- 5. Accept the wavelength with the button "BLANK".
- 6. Remove the cuvette with distilled water from the spectrophotometer.
- 7. Fill the second, dry cuvette with the solution of FL of the lowest concentration. Place the cuvette into the spectrophotometer's chamber. Close the lid. After a few seconds read off the absorption intensity from the display and write it down in the Table 2.

- 8. Pour the solution off the cuvette, dry it by pressing against a paper towel. Fill the cuvette with the FL of the next higher concentration and repeat point 7.
- 9. Perform the analogous measurements for Bengali rose.

B. Graphical presentation of the results

- 1. Based on the data from the Table 2 plot the dependence $A(c) = \varepsilon \cdot l \cdot c$ (absorbance A versus the concentration c), for both dyes.
- 2. Based on the above plots calculate molar absorption coefficients (ϵ) for both dyes. Write the obtained values down to the boxes below the Table 2.

III. ANALYSIS OF MIXTURE OF DYES.

- In a clean test tube prepare dye mixture by mixing two different volumes of FL and BR solutions (concentration 8 µmol/dm³). Use higher volume of FL solution and lower volume of BR solution. Write these volumes down to the Table 3.
- 2. The analysis of absorption spectra of both dyes gives us some important pieces of information:
 - a. absorption of FL solution is equal to 0 in the wavelength range 530 560 nm,
 - b. for the wavelength range between ca. 450 nm and ca. 520 nm the absorption of a mixture is a sum of absorptions of FL and BR solutions.

Taking into account the additivity of the absorption, we can find the concentration of RB in the dye mixture using the calibration curve prepared for RB in point II.B.1.

- 3. Finding BR concentration in the dye mixture using the calibration plot. Since absorption of FL solution is equal to 0 in the wavelength range 530 560 nm, the concentration of BR in the mixture (x_{BR}) can be read off the calibration curve prepared previously for BR (point II.B.1).
 - a. measure the absorbance of the dye mixture at the wavelength of maximal absorption for RB and write it down in Table 4.
 - b. mark this absorbance value on the calibration plot obtained in point II.B.1,
 - c. read the BR concentration in dye mixture off this plot and write it down to the Table 4.
- 4. Knowing the volumes and concentrations of FL and BR solutions used to prepare a mixture, calculate theoretical FL and BR concentrations (x_{FL} ^{theoret} and x_{BR} ^{theoret}) in the mixture. Write these concentrations down to the Table 5. The value x_{BR} ^{theoret} should approximately be the same as the value of x_{BR} estimated according to the procedure described in the point III.2.

Required theoretical knowledge:

- 1. What is spectroscopic analytical method?
- 2. Types of chemical bonds in organic compounds and names of molecular orbitals.
- 3. What is a chromophore in a structure of organic molecule.
- 4. Ground and excited state of a molecule, mechanism of excitation.
- 5. Types of electronic transitions in molecules.
- 6. What is UV-VIS spectroscopy?
- 7. Light absorption laws:
 - a) Lambert Law (I absorption law)
 - b) Lambert-Beer law (II absorption law)
 - c) absorption addition law (III absorption law)
- 8. What is electronic absorption spectrum and what are its parameters ?

- 9. What is a monomer and what is an aggregate of organic dye in a water solution.
- 10.Condition, at which molecules of organic dye in a solution exist in a monomeric phase.
- 11. Main reasons of deviations from Lambert-Beer law.
- 12. Spectral analysis of mixture of two dyes:
 - a) interpretation of equation about additivity of absorption of two organic dyes
 - b) describe the method of determination of unknown concentration of and bengali rose (RB) in a mixture

Wrocław Medical University Department of Biophysics and Neuroscience	Practical No 36 Wave absorption in solutions of organic dyes. Analysis of solution composition	
		Faculty:
Student names		Date:
Grade:	Tutor's signature:	

I. Analysis of dyes' absorption spectra

Table 1. Analytical wavelengths

$\lambda_{max} (nm)$	FL	$\lambda_{max} (nm)$	BR

II. Graphical presentation of the results

Table 2. Dependence of absorbance on dye concentration

No.	FL concentration mol/dm ³	A (FL)	BR concentration mol/dm ³	A (BR)
1.				
2.				
3.				
4.				
5.				
6.				
7.				

$\varepsilon_{BR} =$
$\epsilon_{\sf BR}$ =

III. Analysis of mixture of dyes

Table 3. Dyes' volumes used to prepare the mixture

FL volume	BR volume

Table 4. Finding BR concentration in the dye mixture using calibration curve

λ (nm)	Α(λ)	X _{BR}

Table 5. Theoretical FL and BR concentrations in dye mixture.

$$x_{FL}^{theoret} =$$
 $x_{BR}^{theoret} =$