Gram-positive cocci: staphylococci and streptococci

Part I

Student completes during the lecture

(Passing the material of Part I during the exercises is a condition for passing the exercise)

Genus: Staphylococcus

Species: S. aureus, S. epidermidis, S, saprophiticus

Genus: Streptococcus

Species: **S. pyogenes**, **S. agalactiae**, **S. pneumoniae**, oral streptococci (collectively known as oral streptococci S. viridans - because most of them show the alpha type of hemolysis on blood agar), S. bovis colonizing the

intestines

Genus: Enterococcus

Species: E. faecalis, E. faecium

GP cocci include primary pathogenic species (marked in bold) and potentially pathogenic (part of the natural microbiota of the human body).

Microbiota	
------------	--

Characteristics of GP cocci – supplement during lecture

Species	Occurrence	Transmission	Diseases in humans
S. aureus	Pathogen, Common carriage		Skin infections (folliculitis, impetigo, abscesses, boils, skin cellulitis, wound infections), pneumonia and lung abscesses, purulent osteitis, blood infections (bacteremia, sepsis, septic shock, catheter-related bacteremia), endocarditis, meningitis and brain
S. epidermidis		Endogenous infection, not transmitted human- to-human	abscesses, food poisoning Catheter-related infections of blood and artificial heart valve infections
S. saprophyticus			
S. pyogenes		By droplets and through direct and indirect contact	
S. agalactiae			
S. pneumoniae			
S. viridans	Oral cavity	Endogenous infection, not transmitted human- to-human	

Workbook – microbiology	Wo	rk	bool	k —	micro	bio	logv	<i>/</i> 1
-------------------------	----	----	------	-----	-------	-----	------	------------

S. bovis	Intestines	Endogenous infection, not transmitted human- to-human	
E. faecalis	Intestines, urethra in men	Endogenous infection, not transmitted human- to-human	
E. faecium			

Virulence -	
-------------	--

Virulence factors of GP species pathogenic to humans

Species	Virulence factors	Role in disease
S. aureus	Protein A	
	Hyaluronidase	
	Coagulase (bound and	
	secreted)	
	Staphylokinase	
	Leukocidin Panton-	
	Valentine	
	TCCT 4 Applies	
	TSST-1 toxin (toxic shock syndrome toxin)	
	(toxic shock syndrome toxin)	
	Exfoliating toxins	
	Extoliating toxins	
	Enterotoxins	
S. pyogenes	M protein	
170	'	
	Hyaluronic capsule	
	Streptolysin	
	Streptokinase	
	Pyrogenic toxin SPE	
	(streptococcal pyrogenic toxin)	
	 	
S. agalactiae	Capsule	
	Hemolysin	

S. pneumoniae Capsule

	Pneumolysin	
	Hyaluronidase	
	IgA protease	
Superantigens		
Streptococcal (S. p	yogenes) non-purulent infec	tions – complications
Rheumatic heart d		
Specific prevention	1	
that can be combin The vaccine is avail a)	ed with a protein - then we cable in two versions:	
a) local infections		s of antibiotics used:
		ion/dissemination to the blood:
Treatment of strep	tococcal infections – groups	of antibiotics used:
Treatment of infectantibiotics):	tions caused by Enterococcu	s sp. (they are naturally resistant to many groups of

Part II

Diagnostics of infections caused by Gram-positive cocci

1) Culture on bacteriological media - blood agar (AK) - allows the detection of the type of hemolysis.

Moreover, AK as an enriched substrate enables the growth of demanding species of streptococci;

Staphylococci, as a group of undemanding bacteria, also grow on agar enriched without blood. Types of hemolysis on AK:

- α hemolysis appears as a greening of the substrate around bacterial colonies (results from incomplete hemolysis of red blood cells to methemoglobin derivatives, which have a green color)
- β hemolysis appears as a complete discoloration of the medium around the bacterial colonies and is the result of the complete degradation of hemoglobin released from red blood cells

Hemolysis γ – means no hemolysis around bacterial colonies

- 2) Identification
- a) Biochemical tests tests that detect specific bacterial metabolites (e.g., catalase, coagulase)
- b) **Serotyping** = determination of serological groups of streptococci according to Lancefield (e.g., A, B, C, D, etc.); specific antibodies directed against antigens found on the surface of streptococci, i.e., antigen A, antigen B, etc.
- c) **Rapid tests** tests allowing the quick detection of S. pyogenes antigens (group A) in biological materials collected from patients
- d) Serological tests:

ASO (anti-streptolysin O) – the test detects specific antibodies (detected in the patient's serum) against S. pyogenes streptolysin O (antistreptolysin), the level of which increases in non-purulent complications after streptococcal infections; the level of antistreptolysins in healthy people ranges from 10 to 200 units (IU)/ml; the level of antistreptolysins > 200 IU/ml in adults and 150 IU/ml in children is positive - it indicates recent infection with streptococcus from serological group A (S. pyogenes)

3) Antibiogram - in infections of hospitalized patients and outpatients for whom empirical therapy is ineffective, the resistance of isolated microorganisms to antibiotics active against a given group of bacteria should be determined (antibiograms will be discussed during the exercise on antibiotics)

Practical part – complete the table; enter the serogroup and type of hemolysis on AK

Species	Type of hemolysis	Serologic group
S. pyogens		
S. agalactiae		
S. pneumoniae		
Enterococcus		
Staphylococcus aureus		
Staphylococcus epidermidis		
Streptococcus bovis		

Draw an image from the field of view of the microscope and describe the features: a) species, b) color of the observed bacteria - mark as Gram-positive GP or Gram-negative GN, c) mutual arrangement of bacterial cells (e.g., splits, chains, no characteristic arrangement)

Part III

Topics for discussion with students

- 1. Why do so many people carry S. aureus? Why can't carriers of Staphylococcus aureus be eradicated?
- 2. Why do bacterial species that belong to the natural microflora of the human body cause diseases?
- 3. Why does the capsule protect bacteria from our immune system?
- 4. Why are cutaneous staphylococci a common cause of catheter-related blood infections?

Questions to help organize knowledge about GP cocci

- 1. Which GP cocci cause:
- a) urinary tract infections?
- b) Pneumonia?
- c) Pharyngitis?
- d) Folliculitis?
- e) Boils and abscesses closed? (sort species according to the diseases they cause)
- 2. Name the exotoxins produced by GP cocci.
- 3. Name the superantigens and the species of bacteria that produce them.
- 4. What diseases/syndromes are staphylococcal superantigens responsible for? What about streptococci?
- 5. Which virulence factors of GP cocci damage human cells?
- 6. Which GP cocci can cause disseminated infections name these infections and the bacterial species responsible for them.
- 7. What role does coagulase play in staphylococcal infections?
- 8. What is the role of hyaluronidase in bacterial infections?
- 9. What role do lipoteichoic acids (LTA) play in GP infections?

Credit (date and teacher's signature)