

UNIWERSYTET MEDYCZNY

im. Piastów Śląskich we Wrocławiu

Subject: Faculty Lectures of Virology Topic: Diagnosis of Viral Infections

Academic Year 2024/2025

These educational materials are protected under The Copyright and Related Rights Act of February 4 1994. Their dissemination and use other than for educational purposes of students of the Wroclaw Medical University is forbidden.

Faculty: Medicine Field of study: Virology Level of study (uniform MA) Form of study (full time) Year of study: III Academic title/professional title: professor Name, last name of the lecturer: Beata Sobieszczańśka Position of person conducting classes: teacher Wroclaw Medical University Copyright ©

The appropriate management of the patient depends on the knowledge that follows from the diagnosis

General techniques used in the diagnostics of viral diseases:

- 1) Microscopy
- 2) Culture
- 3) Serology
- 4) Molecular techniques

METHOD	ADNATAGES	DISADAVTAGES
Virus isolation Culture	Produces further material for study of agent	Slow, time-consuming, expensive, difficult
	Usually highly sensitive	Critical cell type or animal selection
		Useless for non-viable virus or non- cultivable agents
Direct observation (electron microscope)	Rapid	Relatively insensitive
	Detects uncultivable viruses	Cumbersome for large number of samples
	Detects non-viable viruses	Limited to a few infections
Detection of viral genomes (NAATs)	Rapid, sensitive	Too high sensitivity (detection of non-related infections)
	Potentially applicable to all viruses (including uncultivable)	Risk of DNA contamination
	Reagents for new viruses easily made	Needs good quality control
	Good quantitation of load	Targeted to a specific agent

METHOD	ADNATAGES	DISADAVTAGES
Serology	Rapid and sensitive	Not applicable to all viruses
	Readily available (diagnostic kits)	Not as sensitive as NAATs
		Targeted at the a specific virus
Antibody seroconversion (acute & convalescent sera)	Useful if appropriate samples for direct detection cannot be obtained or to exclude a particular infection retrospectively	Slow, late (retrospective) Interpretation can be difficult Targeted to a specific agent
IgM serology		
	Rapid	False positives may occur Targeted at the specific agent

Specimen selection & collection:

The right samples, at the right time, and proper transport to the lab.

- The selection of an appropriate sample from the patient depends on:
- Specific syndrome or disease
- Viral etiology suspected

Confusing & complicated in some cases

Sampling and specimen collection are always essential factors essential factors

Specimens should be collected as early as possible following the onset of the disease

DISEASE / SYNDROME	SPECIMEN
RESPIRATORY	Nasal or throat swab; nasopharyngeal aspirate; sputum tracheal aspirates, bronchoalveolar lavage fluid, and serum
ENTERIC	Feces
GENITAL	Genital swab, urine
EYE	Conjunctival (and/or) corneal swab
SKIN	Vesicle fluid/scrapings, biopsy, solid lesion
CNS	CSF, feces (enteroviruses)
GENERALIZED	Throat swab, feces, blood, and leukocytes
AUTOPSY	Relevant organ
ANY	Blood for serology

Specimen transport & storage

Specimens:

- should not be allowed to sit at a room or higher temperature
- should be placed in ice & transported to the lab immediately
- in case of delay they should be refrigerated but not frozen

Storage and transport:

- specimens which need to be held for days before processing:
 - ► storage up to 5 days: 4⁰C
 - storage for 6 or more days
 20°C or preferably 70°C
 Before freezing dilution or
 emulsification in a particular
 transport medium

Specimen transport & storage

Special transport media include:

- protein (serum, albumin, gelatin) to stabilize the virus
- antimicrobials (penicillin, streptomycin) to prevent overgrowth of bacteria & fungi

Direct detection of the virus Electron Microscopy - virus visualization

Electron Microscopy (EM)

- Labor, expensive, and insensitive
- Most helpful for the detection of unculturable viruses
- Viruses are detected & identified based on morphology
- Magnification ca. 50,000 100,000 times

EM depends on there being a large number of virus particles - (at least 10⁵-10⁶ per gram) present in the sample

Indirect detection of the virus Light microscopy: cytology & histology The most readily available technique for the detection of a virus

Virus inclusions (inclusion bodies) = histological changes in infected cells = collections of replicating virus particles either in the nucleus or the cytoplasm CPE = cytopathic effect

Culture of the virus in vitro on cells

Types of cell cultures

- Primary cells essentially normal cells obtained from freshly killed adult animals
- Semi-continuous cells cells taken from embryonic tissue
- Continuous cells immortalized cells, i.e., tumor cell lines that can be cultured indefinitely
- More convenient and cost-effective than embryos and animals The gold standard for virus isolation and identification Advantages:
- Virus propagation (for research)
- Virus identification

Culture of the virus in vitro on cells

Disadvantages:

- Not all viruses produce a cytopathic effect
- Often time-consuming
- Require highly trained staff in specialised laboratories

Shell vial culture = modified culture Allows for more rapid isolation of viruses

Virus in

Culture of the virus

- Laboratory animals
- Chicken embryos

The gold standard for virus isolation and identification

Time-consuming, cumbersome, Expensive (special conditions, laboratories) Moral problems

Animals - host organism

Pathogenesis, clinical symptoms, antibody production, specimens for diagnosis, treatment = all our knowledge about viruses

ZIKA virus pathomechanism study

The selection of the animal species for the type of virus is important

INFLUENZA TRANSMISSION HAS FIVE COMPONENTS

Ferrets are the optimal animal model for studying flu viruses:

- Highly susceptible to human flu viruses
- Exhibit many of the clinical symptoms observed in humans (fever, listlessness, and nasal discharge)
- They transmit the virus efficiently among themselves

Animals often need to be genetically adapted to be infected with a given virus, e.g., via inserting specific genes

Culture of the virus on embryonated eggs

Economical, convenient as chick embryos contain several different types of cells in which various viruses will undergo replication The yolk sac is generally an ideal medium for the growth of viruses

Fertile chicken eggs incubated for 5 to 12 days are aseptically inoculated with virus particles through the shell, and the opening is sealed with paraffin wax

Direct virus detection

Antigen detection Examples: immunofluorescence testing of Cov2 infection Specific fluorochrome dye-labeled antibodies react with virus antigens present in cells

Requires immunofluorescence (confocal) microscope

Advantages: rapid - results in a few hours (scan) Disadvantages: tedious, time-consuming, difficult to interpret, poor sensitivity & specificity

Direct detection of the virus Rapid methods for detecting viruses are based on immunological or molecular techniques

Viral genome detection Molecular techniques

- PCR, RT-PCR, LCR
- Nucleic acid-based Advantages
 Denid
- Genotyping
- Quantification

Advantages Rapid High sensitivity and reproducibility Detection of unculturable viruses

Requires specific equipment

Molecular methods also enable the search for many different viruses at the same time in one sample

Virus Research Panel

Comprehensive Detection of Respiratory Pathogens

Designed to target multiple viruses in a single capture

Targeted against the reference sequences for 29 common human respiratory viruses Point-of-care testing (POCT) = medical testing done near the patient (outside a traditional laboratory setting) to provide rapid results for immediate clinical decision-making

Advantages:

• Faster diagnosis and treatment - superior in terms of both sensitivity and specificity to other tests

- Improved patient management (particularly in settings with limited access to advanced diagnostic facilities)
- Potentially reduced costs

Disadvantages:

Correct procedures and quality control are crucial to ensure accurate and reliable results

Molecular POCTs are based on: Nucleic acid amplification technique (NAATs), Recombinase polymerase amplification (RPA), Loop-mediated isothermal amplification (LAMP), Iso-thermal Molecular Nicking Enzyme Amplification Reaction (NEAR) Benefits of POC Testing: Rapid results enabling timely clinical decisions a reduction in antibiotic prescriptions and ancillary investigations

User-friendly, cost-effective, and can be performed at the bedside, yielding results within minutes

Smartphone-based point-of-care testing of the SARS-CoV-2

Indirect detection of the virus

Serology (host antibody detection) Detection of rising titers of antibodies between acute and convalescent stages of infection, or the detection of IgM in primary infection

Questions

- 1) Which laboratory techniques allow the etiology of a viral infection to be determined as quickly as possible?
- 2) What techniques are POCTs based on?
- 3) List three different techniques that enable direct detection of the virus in patient samples.
- 4) When does serology clearly indicate infection with a given virus?
- 5) How can a light microscope be used to diagnose viral infections?
- 6) What is the best model to study the pathomechanisms of viral infections?
- 7) What is the use of EM in virological diagnostics?

Thank you for your attention!

To get information on the presented content, please send messages to the e-mail address:

beata.sobieszczanska@umw.edu.pl